1. Let \mathbb{Z}_n and \mathbb{Z}_m be two cyclic groups of order n and m respectively. State and prove a necessary and sufficient condition involving n and m for $\mathbb{Z}_n \times \mathbb{Z}_m$ to be cyclic.

Solution: $\mathbb{Z}_n \times \mathbb{Z}_m$ is cyclic if and only if gcd(m, n) = 1. (\Rightarrow)Let $\mathbb{Z}_n \times \mathbb{Z}_m$ be cyclic. On the contrary, assume that m and n are not co-prime, that is, gcd(m, n) = d and d > 1.

Let $(a,b) \in \mathbb{Z}_n \times \mathbb{Z}_m$. Note that *m* divides $\frac{mn}{d}$ and *n* divides $\frac{mn}{d}$. Therefore,

$$(\frac{mn}{d}a \mod n, \frac{mn}{d}b \mod m) = (0,0)$$

 $\implies |(a,b)| = \frac{mn}{d} < mn \text{ as } d > 1.$

Therefore, $\mathbb{Z}_n \times \mathbb{Z}_m$ can not be generated by any of its elements. Hence, $\mathbb{Z}_n \times \mathbb{Z}_m$ is not cyclic. Therefore, gcd(m, n) = 1.

(\Leftarrow) Let gcd(m,n) = 1. Let $k \in \mathbb{N}$ such that $k(1,1) = (k \mod n, k \mod m) = (0,0)$. It is possible only when k = mn as n and m are relatively prime. Therefore group generated by (1,1)has order $mn = |\mathbb{Z}_n \times \mathbb{Z}_m|$.

Therefore (1,1) generates $\mathbb{Z}_n \times \mathbb{Z}_m$. Hence $\mathbb{Z}_n \times \mathbb{Z}_m$ is cyclic.

2. Prove that if a finite group G is cyclic of order n, then for every positive integer dividing n, there exists a unique subgroup of order d in G.

Solution: Given that G is a cyclic group of order n. Let a be its generator and |a| = n. Since d divides n, the element $(a)^{\frac{n}{d}}$ has order d. If not, then there exists a positive integer d' < d such that $(a^{\frac{n}{d}})^{d'} = e$, where e is the identity of G. Since d divides n, let $\frac{d}{n} = m$. Therefore $a^{md'} = e$ and md' < md = n. Therefore |a| < n. This is a contradiction to the fact that |a| = n. Hence $|a^{\frac{n}{d}}| = d$ and the subgroup $\langle a^{\frac{n}{d}} \rangle$ has order d.

3. (a) If a finite group G acts on a finite set S, show that each orbit has cardinality a divisor of the order of G.

Solution: Let O_x denotes the orbit of $x \in X$, that is, $O_x = \{g.x | g \in G\}$. Since, $O_x \cong G/G_x$, where G_x is the stabilizer subgroup in G of x. Therefore, cardinality of O_x is same as the cardinality of G/G_x . Hence, cardinality of O_x divides |G|.

(b) Let G be a group of order p^n for some prime p acting on a finite set S whose cardinality is not a multiple of p. Show that there exists $x_0 \in S$ such that $g.x_0 = x_0$ for all $g \in G$.

Solution: Please go through the proof of Sylow's second theorem.

4. (a) Find the distinct conjugacy class of A_4 .

Solution: There are four conjugacy classes in A_4 , namely $\{(1)\}, \{(12)(34), (13)(24), (14)(23)\}, \{(123), (243), (134), (142)\}, \{(132), (234), (143), (124)\}$

(b) Determine the class equation for A_4 .

Solution: The class equation is: 12 = 1 + 4 + 4 + 3.

5. Let G be a finite group and p be a prime dividing the order of G. Prove that there exists an element of order p in G. (You may treat the abelian and non-abelian case separately).

Solution: If G is abelian then this is cauchy's theorem. Please refer to Theorem 11 of Abstract Algebra by Dummit and Foote.

If G is non-abelian: On the contrary, assume that no element of G is of order p. Therefore, no proper subgroup of G has order divisible by p. For each proper subgroup H of G, we have

$$|G| = |H|[G:H]$$

Since |H| is not divisible by p and p divides |G|, therefore p divides [G : H] for every proper subgroup H of G.

Since G is non-abelian. it has some conjugacy classes of order greater than 1. Let these classes be represented by $g_1, g_2, ..., g_k$. Conjugacy classes of size 1 are the elements of the centralizer of G. Since conjugacy classes in G form a partition of G, we have

$$|G| = |Z(G)| + \sum_{i=1}^{k} (\text{size of conjugacy classes of } g_i) = |Z(G)| + \sum_{i=1}^{k} [G : Z(g_i)]$$
(1)

where $Z(g_i)$ is the centralizer of g_i . Since conjugacy classes of each g_i has size greater than 1, we have $[G : Z(g_i)] > 1$. So $Z(g_i) \neq G$ for every *i*. Therefore *p* divides $[G : Z(g_i)]$. The left hand side of Equation (1) is divisible by *p* and $[G : Z(g_i)]$ is also divisible by *p*. Therefore *p* divides |Z(G)|. Since no proper subgroup of *G* has order divisible by *p*. it is possible only when Z(G) = G, which is a contradiction to the fact that *G* is abelian.

- 6. Give examples of the following and justify your answers.
 - (a) Two elements $g, h \in G$ such that g and h are of finite order, but gh is of infinite order. Solution Take $G = GL(n, \mathbb{C})$, the group of all n by n complex invertible matrices and the group operation is matrix multiplication. Take

$$g = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$
 and $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Clearly, g and h are of order 2. A simple computation yields that

$$(gh)^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

Therefore, gh is of infinite order.

(b) An infinite group G, all of whose elements have finite order.

Solution Take $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \dots \times \mathbb{Z}_2$ Clearly, |G| is infinite, but every element is of order at most 2.

or Take $G = \mathbb{Q}/\mathbb{Z}$, clearly G is an infinite group. Let $a \in G$, then $a = m/n + \mathbb{Z}$ for some $m, n \in \mathbb{Z}$. it can be easily seen that the order of a is at most n.

(c) A group G and subgroups H and K such that $H \leq K$, $K \leq G$ but $H \nleq G$ **Solution** Take $G = S_4$, $H = \langle (12)(34) \rangle$ and $K = \{ (12)(34), (13)(42), (23)(41), e \}$. It can be easily seen that $H \leq K$, $K \leq G$. but $H \nleq G$, Since $gHg^{-1} \notin H$ for $g = (13) \in G$.

- (d) A group G with normal subgroups H and K such that $H \cong K$ but $G/H \ncong G/K$. **Solution** Take $G = \mathbb{Z}_2 \times \mathbb{Z}_4, H = \{(0,0), (0,2)\}$ and $K = \{(0,0), (1,0)\}$. Here $H \cong K$ but $G/H \ncong G/K$. Since every non-idnetity element of G/H is order 2 but there exists a non identity element $(1,1) \in G/K$ which is not of order 2. Hence G/H and G/K can not be isomorphic.
- (e) A group G and a non-trivial subgroup N such that $G/N \cong G$. Solution Take $G = \mathbb{Z} \times \mathbb{Z}$ and $N = \mathbb{Z} \times \{0\}$. Here, G/N is isomorphic to G.