
2018-2019 Solution
SUBJECT NAME - Algebra-I MIDTERM Semesteral Exam

1. Let Zn and Zm be two cyclic groups of order n and m respectively. State and prove a necessary
and sufficient condition involving n and m for Zn × Zm to be cyclic.

Solution: Zn × Zm is cyclic if and only if gcd(m,n) = 1.
(⇒)Let Zn × Zm be cyclic. On the contrary, assume that m and n are not co-prime, that is,
gcd(m,n) = d and d > 1.
Let (a, b) ∈ Zn × Zm. Note that m divides mn

d and n divides mn
d . Therefore,

(
mn

d
a mod n,

mn

d
b mod m) = (0, 0)

=⇒ |(a, b)| = mn

d
< mn as d > 1.

Therefore, Zn × Zm can not be generated by any of its elements. Hence, Zn × Zm is not cyclic.
Therefore, gcd(m,n) = 1.

(⇐) Let gcd(m,n) = 1. Let k ∈ N such that k(1, 1) = (k mod n, k mod m) = (0, 0). It is

possible only when k = mn as n and m are relatively prime. Therefore group generated by (1, 1)
has order mn = |Zn × Zm|.
Therefore (1, 1) generates Zn × Zm. Hence Zn × Zm is cyclic.

2. Prove that if a finite group G is cyclic of order n, then for every positive integer dividing n, there
exists a unique subgroup of order d in G.

Solution: Given that G is a cyclic group of order n. Let a be its generator and |a| = n. Since d
divides n, the element (a)

n
d has order d. If not, then there exists a positive integer d′ < d such that

(a
n
d )

d′

= e, where e is the identity of G. Since d divides n, let d
n = m. Therefore amd′

= e and
md′ < md = n. Therefore |a| < n. This is a contradiction to the fact that |a| = n. Hence |an

d | = d
and the subgroup 〈an

d 〉 has order d.

3. (a) If a finite group G acts on a finite set S, show that each orbit has cardinality a divisor of the
order of G.

Solution: Let Ox denotes the orbit of x ∈ X, that is, Ox = {g.x|g ∈ G}. Since, Ox
∼= G/Gx,

where Gx is the stabilizer subgroup in G of x. Therefore, cardinality of Ox is same as the
cardinality of G/Gx. Hence, cardinality of Ox divides |G|.

(b) Let G be a group of order pn for some prime p acting on a finite set S whose cardinality is not
a multiple of p. Show that there exists x0 ∈ S such that g.x0 = x0 for all g ∈ G.

Solution: Please go through the proof of Sylow’s second theorem.

4. (a) Find the distinct conjugacy class of A4.

Solution: There are four conjugacy classes in A4, namely
{(1)}, {(12)(34), (13)(24), (14)(23)}, {(123), (243), (134), (142)}, {(132), (234), (143), (124)}
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(b) Determine the class equation for A4.

Solution: The class equation is: 12 = 1 + 4 + 4 + 3.

5. Let G be a finite group and p be a prime dividing the order of G. Prove that there exists an element
of order p in G. (You may treat the abelian and non-abelian case separately).

Solution: If G is abelian then this is cauchy’s theorem. Please refer to Theorem 11 of Abstract
Algebra by Dummit and Foote.
If G is non-abelian: On the contrary, assume that no element of G is of order p. Therefore, no
proper subgroup of G has order divisible by p. For each proper subgroup H of G, we have

|G| = |H|[G : H]

Since |H| is not divisible by p and p divides |G|, therefore p divides [G : H] for every proper
subgroup H of G.
Since G is non-abelian. it has some conjugacy classes of order greater than 1. Let these classes be
represented by g1, g2, ..., gk. Conjugacy classes of size 1 are the elements of the centralizer of G.
Since conjugacy classes in G form a partition of G, we have

|G| = |Z(G)|+
k∑

i=1

(size of conjugacy classes of gi) = |Z(G)|+
k∑

i=1

[G : Z(gi)] (1)

where Z(gi) is the centralizer of gi. Since conjugacy classes of each gi has size greater than 1, we
have [G : Z(gi)] > 1. So Z(gi) 6= G for every i. Therefore p divides [G : Z(gi)]. The left hand side
of Equation (1) is divisible by p and [G : Z(gi)] is also divisible by p. Therefore p divides |Z(G)|.
Since no proper subgroup of G has order divisible by p. it is possible only when Z(G) = G, which
is a contradiction to the fact that G is abelian.

6. Give examples of the following and justify your answers.

(a) Two elements g, h ∈ G such that g and h are of finite order, but gh is of infinite order.
Solution Take G = GL(n,C), the group of all n by n complex invertible matrices and the
group operation is matrix multiplication. Take

g =

[
1 −1
0 −1

]
and h =

[
1 0
0 −1

]
Clearly, g and h are of order 2. A simple computation yields that

(gh)n =

[
1 n
0 1

]
Therefore, gh is of infinite order.

(b) An infinite group G, all of whose elements have finite order.

Solution Take G = Z2 × Z2... × Z2 Clearly, |G| is infinite, but every element is of order
atmost 2.
or Take G = Q/Z, clearly G is an infinite group. Let a ∈ G, then a = m/n + Z for some
m,n ∈ Z. it can be easily seen that the order of a is atmost n.

(c) A group G and subgroups H and K such that H E K, K E G but H 5 G

Solution Take G = S4, H = 〈(12)(34)〉 and K = {(12)(34), (13)(42), (23)(41), e}. It can be
easily seen that H E K, K E G. but H 5 G, Since gHg−1 * H for g = (13) ∈ G.
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(d) A group G with normal subgroups H and K such that H ∼= K but G/H � G/K.

Solution Take G = Z2 × Z4, H = {(0, 0), (0, 2)} and K = {(0, 0), (1, 0)}. Here H ∼= K but
G/H � G/K. Since every non-idnetity element of G/H is order 2 but there exists a non
identity element (1, 1) ∈ G/K which is not of order 2. Hence G/H and G/K can not be
isomorohic.

(e) A group G and a non-trivial subgroup N such that G/N ∼= G.

Solution Take G = Z× Z and N = Z× {0}. Here, G/N is isomorphic to G.
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